人脸识别
Last updated
Was this helpful?
Last updated
Was this helpful?
DeepFace
CVPR 2014
DeepFace: Closing the Gap to Human-Level Performance in Face Verification
Yaniv Taigman
Facebook AI Lab
sofrmax loss + contrastive loss
DeepID1
CVPR 2014
Deep Learning Face Representation from Predicting 10,000 Classes
Yi Sun
The Chinese University of Hongkong
sofrmax loss + contrastive loss
DeepID2
NIPS 2014
Deep Learning Face Representation by Joint Identification-Verification
Yi Sun
The Chinese University of Hongkong
sofrmax loss + contrastive loss
FaceNet
CVPR 2015
FaceNet: A Unified Embedding for Face Recognition and Clustering
Florian Schroff
triplet loss
CenterLoss
ECCV 2016
A Discriminative Feature Learning Approach for Deep Face Recognition
Yandong Wen
Shenzhen key lab of computer Vision and Pattern recognition
center loss
L-sofrmaxLoss
ICML 2016
Large-Margin Softmax Loss for Convolutional Neural Networks
Weiyang Liu & Yandong Wen
Peking Uiversity, South China University of Technology
L-softmax loss
SphereFace
CVPR 2017
SphereFace: Deep Hypersphere Embedding for Face Recognition
Weiyang Liu
Georgia Institute of Technology
A-softmax loss
CosFace
CVPR 2018
CosFace: Large Margin Cosine Loss for Deep Face Recognition
Hao Wang
Tencent AI Lab
large margin cosine loss
ArcFace
CVPR 2019
ArcFace: Additive Angular Margin Loss for Deep Face Recognition
Jiankang Deng & Jia Guo
Imperial College London, InsightFace
additive angular margin loss
人脸识别属于度量学习的范畴,学习到的人脸特征具有以下特点
Intra-class Compactness
Inter-class Discrepancy
Comparison of open-set and closed-set recognition
Weight Norm and Feature Norm
classification boundary
loss function
其中,NSL是Normalized version of Softmax Loss。
softmax
False
False
1
1
0
0
L-softmax_v1
False
False
1
2
0
0
A-softmax_v1
True
False
1
2
0
0
A-softmax_v2
True
False
1
3
0
0
norm-softmax
True
True
1
1
0
0
CosFace_v1
True
True
4
1
0
0.1
CosFace_v2
True
True
4
1
0
0.2
ArcFace_v1
True
True
4
1
0.1
0
ArcFace_v2
True
True
4
1
0.2
0
ArcFace_v3
True
True
4
1
0.3
0
采用通用的人脸损失公式,采用不同的参数如下,在minist上的可视化效果见