numpy
numpy
>>> c = np.arange(4)
>>> type(c)
<type 'numpy.ndarray'>
>>> c.shape
(4,)
>>> c[0]
0
>>> type(c[0])
<type 'numpy.int64'>
>>> d = np.random.randint(24,size=[2,3,4])
array([[[ 6, 12, 18, 4],
[15, 8, 6, 5],
[ 0, 15, 16, 3]],
[[15, 16, 2, 11],
[20, 3, 13, 19],
[11, 23, 21, 7]]])
>>> d.sum(axis=0).shape
(3, 4)
>>> d.sum(axis=1).shape
(2, 4)
>>> d.sum(axis=2).shape
(2, 3)
>>> d.sum(axis=0,keepdims=True).shape
(1, 3, 4)
>>> d.sum(axis=1,keepdims=True).shape
(2, 1, 4)
>>> d.sum(axis=2,keepdims=True).shape
(2, 3, 1)
>>> d.sum(axis=0,keepdims=True)
array([[[21, 28, 20, 15],
[35, 11, 19, 24],
[11, 38, 37, 10]]])
>>> d.sum(axis=1,keepdims=True)
array([[[21, 35, 40, 12]],
[[46, 42, 36, 37]]])
>>> d.sum(axis=2,keepdims=True)
array([[[40],
[34],
[34]],
[[44],
[55],
[62]]])array的参数
array数组创建
数组维度变换
矩阵合并
矩阵保存
矩阵打乱
数组切片
常用函数
矩阵转置T
T点乘和矩阵乘法
广播Boardcasting
Last updated